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Problem Set 3:  due Monday, February 11, 2019 

 

N.B.:  These problems include pieces which are open-ended.  Feel free to ask for advice, 

clarification!  Some recommended references have been mentioned in class, in posted 

notes, and given in posted articles. 

 

1) Consider a shear layer in a stably stratified fluid, as shown.  Take the coefficient 

of surface tension between the fluids of mass densities 1
r , 2

r  
1

r <
2

r( ) to be s . 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) Calculate the general dispersion relation for waves/instabilities at the interface.  

Take the fluids as ideal.  What controls high and low k behavior? 

 

 

b) Ignoring surface tension, can you identify a dimensionless number which 

characterizes the competition between shear and buoyancy?  Compare your 

number to the Richardson number. 

 

 

c) What is the critical velocity for the onset of shear instability?  Hoe does it scale 

with s , 
 1
r , 

2
r , k, etc.? 

 

 

d) Taking 
 1
r « air , 

 2
r «water , this problem becomes a crude model of the air-sea 

interface  Using it, propose a mechanism for wave generation by wind.  What is 

the critical wind velocity for excitation of short wavelength ( l ~ cm ) gravity-

capillary waves? 
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2a) Determine the general dispersion relation for surface waves in a fluid of finite 

depth d.  Treat the fluid as ideal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) Discuss the limits kd >>1, kd <<1. 

 

 

c) For kd <<1, deduce by analogy with sound waves the equations describing surface 

waves in shallow water.  Hint:  the dynamical fields are water height and 

horizontal velocity.  Try to deduce/guess the nonlinear equations, called shallow 

water equations. 
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3) In MHD, the Ohm’s Law is  

 

  
 
E +

v ´ B

c
= hJ  

 

 and displacement current is neglected (low frequency!), so – with Faraday’s Law 

– one obtains the magnetic induction equation, which closely resembles the 

vorticity equation. 

 

 

a) Derive the magnetic field induction equation.  Show B r  is frozen-in for 

compressible ideal MHD. 

 

 

b) For ideal MHD, prove Alfven’s Theorem: 

 

 

   

 

 Be sure to treat motion of the loop.  What is this the counterpart of? 

 

 

c) What does Alfven’s theorem mean? 

 

 

 

 

4a) Derive the dispersion relation for buoyancy waves in a stably stratified fluid with  
𝜕𝑠

𝜕𝑧⁄ > 0 and . These are called internal waves. Take the equilibrium 

hydrostatic. Show that internal waves are ‘backward’, i.e. the phase and group 

velocity can be in opposite directions. 

 

b) Generalize your analysis of internal waves to include rotation effects, where 

W = Wẑ . When are corrections to the dispersion relation due to rotation of 

significance? 

 

 

 

5) Falkovich observes that the interfacial version of the ideal flow shear driven 

instability (i.e. the Kelvin-Helmholtz instability) necessarily has a maximum (or 

minimum) in the profile of vorticity located at the interface.  This problem 

addresses the presence of inflection points in smooth profiles leading to ideal 

shear flow instabilities. 
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 Consider an inviscid incompressible shear flow 
 
V = Vy x( ) ŷ  in a domain 0 £ ´ £ a , 

- ¥ < y < +¥.  Show that for instability to occur, there must be at least one value of 

x in 0,a[ ] for which 
 

2
¶ Vy ¶

2

x = 0 , i.e. there must be an inflection point in the flow.  

It is useful to approach this using the 2D vorticity advection equation and to write 

 
v = Ñf ´ ẑ .  Also, write the frequency w  as 

 realw + ig . 

 

 N.B.:  The theorem you just derived was first proved by Rayleigh (who else?) and 

establishes only that an inflection point is necessary for instability.  A second 

theorem, due to Fjortoft, demonstrates that a vorticity maximum is necessary. 


